Monte Carlo methods
نویسنده
چکیده
Bayesian inference often requires integrating some function with respect to a posterior distribution. Monte Carlo methods are sampling algorithms that allow to compute these integrals numerically when they are not analytically tractable. We review here the basic principles and the most common Monte Carlo algorithms, among which rejection sampling, importance sampling and Monte Carlo Markov chain (MCMC) methods. We give intuition on the theoretical justification of the algorithms as well as practical advice, trying to relate both. We discuss the application of Monte Carlo in experimental physics, and point to landmarks in the literature for the curious reader.
منابع مشابه
Applying Point Estimation and Monte Carlo Simulation Methods in Solving Probabilistic Optimal Power Flow Considering Renewable Energy Uncertainties
The increasing penetration of renewable energy results in changing the traditional power system planning and operation tools. As the generated power by the renewable energy resources are probabilistically changed, the certain power system analysis tolls cannot be applied in this case. Probabilistic optimal power flow is one of the most useful tools regarding the power system analysis in presen...
متن کاملApplication of Monte Carlo Simulation in the Assessment of European Call Options
In this paper, the pricing of a European call option on the underlying asset is performed by using a Monte Carlo method, one of the powerful simulation methods, where the price development of the asset is simulated and value of the claim is computed in terms of an expected value. The proposed approach, applied in Monte Carlo simulation, is based on the Black-Scholes equation which generally def...
متن کاملStochastic Assessment of Voltage Sags in Distribution Networks
This paper compares fault position and Monte Carlo methods as the most common methods in stochastic assessment of voltage sags. To compare their abilities, symmetrical and unsymmetrical faults with different probability distribution of fault positions along the lines are applied in a test system. The voltage sag magnitude in different nodes of test system is calculated. The problem with the...
متن کاملMonte Carlo characterization of photoneutrons in the radiation therapy with high energy photons: a Comparison between simplified and full Monte Carlo models
Background: The characteristics of secondary neutrons in a high energy radiation therapy room were studied using the MCNPX Monte Carlo (MC) code. Materials and Methods: Two MC models including a model with full description of head components and a simplified model used in previous studies were implemented for MC simulations. Results: Results showed 4-53% difference between full and wit...
متن کاملInvestigation of Monte Carlo, Molecular Dynamic and Langevin dynamic simulation methods for Albumin- Methanol system and Albumin-Water system
Serum Albumin is the most aboundant protein in blood plasma. Its two major roles aremaintaining osmotic pressure and depositing and transporting compounds. In this paper,Albumin-methanol solution simulation is carried out by three techniques including MonteCarlo (MC), Molecular Dynamic (MD) and Langevin Dynamic (LD) simulations. Byinvestigating energy changes by time and temperature (between 27...
متن کاملMonte Carlo and experimental relative dose determination for an Iridium-192 source in water phantom
Background: Monte Carlo and experimental relative dose determination in a water phantom, due to a high dose rate (HDR) 192Ir source is presented for real energy spectrum and monochromatic at 356 keV. Materials and Methods: The dose distribution has been calculated around the 192Ir located in the center of 30 cm ×30 cm ×30 cm water phantom using MCNP4C code by Monte Carlo method. Relati...
متن کامل